
How NOT to Monitor The Global DFZ

Overview
● Christmas, I’ve got two weeks off work, loads of wine and food
● I’m feeling “cody”

Overview
● The global BGP DFZ contains a non-trivial amount of

“unacceptable” data (in my opinion)
● Some stuff is binary “this is bad”:

− RPKI invalids
− full table leaks

Overview
● Some stuff is not so clear.
● What’s an acceptable…

− AS path length?

− prefix length?

− number of communities?

− Number of updates per peer/origin/prefix, per second?

Overview
● Naming and shaming repeat offenders is proven to be less

effective when compared to training those offenders
○ …but significantly more entertaining

● We have a shortage of mavericks which nobody asked for

● Did I mention the wine?

Overview
Epiphany: what the world needs is a ‘Top Trumps’ of worst DFZ operators

Overview
● Why wouldn’t this be great!?!?

Overview
● It’s a WIP, but I’ve already learned a lot…

○ You need a DFZ data source
○ You need code to process the DFZ data
○ You need compute/storage to run code and store bytes

Data

Data
● Setup a BGP peering and parse the BGP UPDATES

− I’m too lazy to write a new parser

− Existing libraries are poop

− Realtime data is not resilient (self hosting / shoestring)
● Setup a BGP peering and use a JSON exporter

− Realtime data
● RIS Live “fire-hose” API: https://ris-live.ripe.net/

− Realtime data
● *** Use MRT dumps ***

− Parser libraries exist, asynchronous data consumption

https://ris-live.ripe.net/

Data
● RFC6396 “MRTs” - Multi-Threaded Routing Toolkit (MRT)

Routing Information Export Format
● Encode routing data in a binary file using a TLV structure

○ Note: turns out, not parser friendly
● Mainly used for BGP, also supports OSPFv2, OSPFv3, ISIS

Data

Data
● Type: TABLE_DUMP_V2
● Subtypes:

− PEER_INDEX_TABLE

− RIB_IPV[4|6]_[UNICAST|MULTICAST]

− RIB_GENERIC

Data
● Type: BGP4MP_ET
● Subtypes:

− BGP4MP_STATE_CHANGE

− *** BGP4MP_MESSAGE ***

− *** BGP4MP_MESSAGE_AS4 ***

− BGP4MP_STATE_CHANGE_AS4

− BGP4MP_MESSAGE_LOCAL

− BGP4MP_MESSAGE_AS4_LOCAL

Data
● Public MRT archives in descending order of shitness:

− PCH Raw Routing Data - total shite

− RouteViews MRT Archive - middle shite

− RIPE RIS Raw Data - a “little bit” shit

https://www.pch.net/resources/Raw_Routing_Data/
http://routeviews.org/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data

Data
● Note: these MRT archives are all from IXPs

Data
● Turns out - MRT files contain a lot of poop

− All message types (BGP OPEN, BGP KEEPALIVE etc.)

− BGP state changes

− Empty BGP UPDATES

− Some UPDATEs have no list of withdrawn routes

− Some UPDATEs have an empty list of withdrawn routes

− BGP is IPv4 biased -> v6 NLRIs are MP_REACH_NLRIs

Data
● In summary:

− Public MRT archives are “OK” but they are all IXPs, no Tier
1 / Tier 2 transits

− MRTs contain their own poop
− Poor availability of MRT parsing libraries

(https://bgpkit.com/ is coming to the rescue!)

https://bgpkit.com/

Code

Code
● Short term: I thought, I “only” need to parse a few MRT files,

generate some basic stats, and then Tweet about them
● Long term:

− Tag offending networks in Tweets
− Send email to peeringDB contacts “yoo is teh b0g0n”

Code
● Why not write this in Python?

− mrtparse module
− tweepy module
− Github module
− PeeringDB module
− I already mentioned I’m lazy

https://github.com/t2mune/mrtparse
https://www.tweepy.org/
https://github.com/gitpython-developers/GitPython
https://github.com/peeringdb/peeringdb-py

Code
● DO NOT write high performance code in Python

Code
● Decompressing and parsing a “large” MRT file (~150MB RIB

dump) into a Python object uses a lot of memory (circa 1GB)
● Single threaded parsing is too slow
● Python multithreading is shite
● Python GIL means multi-processing requires full memory copy

− 8 cores/proc’s == 8GB of memory to parse 150MB file!

Code
● Split MRT files into $number_of_cpu files
● Splitting is single threaded
● Parse each chunk on a separate CPU core
● Merging of parsed results is single threaded
● MRT files have no total length, no index, they are pure TLVs

Code
● Using PyPy3 to resolve the splitting/merging performance

Code
● Python is shit in other ways too

− Dynamically typed (using mypy)
− Same code has difference results in venv or pypy
− Requires extensive unit testing

Compute

Compute
● Where will you store the raw data?
● Where will your code run?
● Where will you store the results?

Compute & Storage
● DON’T use an SBC you had lying around

n2_shat.jpg

Compute & Storage
● ODROID-N2

− Circa 80 EUROs

− Quad-core ARM Cortex-A73 @ 1.8Ghz

− Dual-core ARM Cortex-A53 @ 1.9Ghz

− 4GM RAM (–250MBs for GPU)

− 16GB eMMC for OS + Redis DB

− 64GB USB stick for “mass storage”

Compute & Storage
● Parsing in Python is killing the polar bears

Compute & Storage
● Parsing in Python is killing the polar bears

Compute & Storage
● It’s also killing my patients

Compute & Storage
● Currently 912 MRT files are parsed per day
● ~27M BGP UPDATES
● About 8 hours to download and parse the stats for a day

because I made a pipeline using docker-compose, which is currently broken :(

Lessons Learned

Lessons Learned
● Python shit -> use Go or Rust
● MRTs shit -> Use RIS-Live or equivalent peerings
● SBCs are not “compute” -> Memory and storage bandwidth

Lessons Learned
● Haters gunna hate

Lessons Learned
● A Twitter thread is not the place to distribute a lot of information

End

Bot: https://twitter.com/bgp_shamer

Daily reports: https://github.com/DFZ-Name-and-Shame/dnas_stats

https://twitter.com/bgp_shamer
https://github.com/DFZ-Name-and-Shame/dnas_stats

