
3rd SIG-PMV @ NORDUnet, Copenhagen, 2017-11-28

Network Function Verification

using Open Source Solutions

Outline

• Who: My background

• What: Initial research on open source network function testing

• Why: If you haven’t tested it, it doesn’t work

• When: Ad-hoc not continuous, soak testing/break-fix

• Where: Production WANs and lab environments

• How: Simulate network traffic using open source software

• Examples: My findings and lessons learnt (so far)

• Future work: Planned areas of testing and tooling development

Background

• James Bensley / Platform Architect / SP NetEng + Linux + coding

• Updata Infrastructure (Capita Networking Services)

• Originally formed in 2003, CNS-WAN has 500+ employees today

• ISP and Managed WAN Provider

• UK based LLU provider (CLEC)

• Present in 1200 exchanges UK wide

• Business, Local Gov, Edu, Health Care, Fire & Rescue, Police

What: Open Source Network Function Validation

Open source, synthetic, in-band, network function validation and performance

testing:

• Open Source: Specifically OSS runs on Linux (happy to pay but not to

compromise on scale/features/security/standards compliance)

• Synthetic: This means the ability to simulate production traffic (or replay it) to

provide reliable A/B testing

• In-Band: Focus on the data plane level (many operators are solving ctrl/mgmt

plane using CI/CD processes)

What: Open Source Network Function Validation

• Network Functions: Not all traffic passes through the same set of network

functions when using NFV or SR:

• Load-balancing e.g. (un)-ECMP/LAG/Geo/Session

• Fast-reconvergence e.g. IP FRR (r)LFA/MPLS-TE FRR/BGP PIC

• Traffic filtering e.g. BUM filters (Ethernet)/uRPF (IP & MPLS)

Why: Fail-safe and assume it doesn’t work

http://www.testequipmentdepot.com/viavi/images/csc-ethernet.jpg

Was the exact same frame received that was sent?

Traffic flow

Schrodinger’s Router

Secret routing magic

happens here
Frame Tx

Traffic flow

Frame Rx

?

http://www.testequipmentdepot.com/viavi/images/csc-ethernet.jpg

Why: Fail-safe and assume it doesn’t work

Testing in general:

• “If you haven’t tested it, it doesn’t work!”

• Black box vendor devices with undocumented behaviour

• Troubleshooting might require TAC assistance and/or hidden commands

• Currently black box vendor devices being tested with black box testers

• “We can’t test every possibility in the lab”

Where: Ideally in the lab

• Mainly testing physical devices in the lab (sometimes in production)

• However, we’re exacerbating the issue with the rise of NFV and COTS (SD-

WAN, vCPE, vPE, vRR, vBNG)

• We’re running black box virtual network functions!

• Obvious issue: COTS is by definition not task optimised

• Less obvious issue: how many additional variables COTS introduces

• NFV is an interesting area for open source (OVS+DPDK, VPP)

• Caveat: white box hardware is not open source hardware

Where: Physical network devices

• Historically only expensive hardware testers could test high bandwidth links

• Initially testing layers 2/2.5 (Ethernet/MPLS) and moving into layer 2/2.5 VNFs

• Both lack security, MPLS is for transport and has no encapsulation support:

• E.g. does it even work? Hashing on Broken Assumptions

• E.g. ECMP with L2 and L3 VPNs is inherently flawed due to a heuristic

methodology. Old problem BCP128 (2007), still an issue draft-ietf-pals-

ethernet-cw-00.txt (2017!)

https://www.nanog.org/sites/default/files/1_Saino_Hashing_On_Broken_Assumptions.pdf
https://tools.ietf.org/html/bcp128
https://www.ietf.org/id/draft-ietf-pals-ethernet-cw-00.txt

Where: Virtualisation paths

Hypervisor

Virtual Router

(secret routing magic)

Virtio B/E

Virtio F/E

Host OS

NIC

Bridge

TAP

Virtio F/E

Virtio B/E

NIC

Bridge

TAP Hypervisor

Virtual Router

(secret routing magic)

vNIC

Host OS

PF

VF

vNIC

PF

VF

Traditional vs. modern VNF network path on Linux:

When: Ad-hoc not continuous

• Staging and soak testing phases for individual network functions

• A localised approach, device-by-device, feature-by-feature

• Support automated benchmarking and CI/CD processes with data-plan testing

in virtual-labs

How: Linux & OSS PMV Tooling

• Passive, synthetic, in-band traffic generation (or replay)

• A localised approach, device-by-device, feature-by-feature

• Traffic volume (bandwidth) is rarely an issue the focus is more on functionality,

but still in scope to fully move away from black box hardware testers

• Prefer open source to maximise on features/distribution/support/bug fixes etc.

How: Linux & OSS PMV Tooling

https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg

MoonGen, Pktgen

Pktgen, MoonGen, Etherate

iPerf, Trex, Scapy

CRC/FCS, ECC

https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg
https://github.com/emmericp/MoonGen
http://pktgen-dpdk.readthedocs.io/en/latest/
http://pktgen-dpdk.readthedocs.io/en/latest/
https://github.com/emmericp/MoonGen
https://github.com/jwbensley/Etherate
https://github.com/esnet/iperf
https://trex-tgn.cisco.com/
https://github.com/secdev/scapy

How: Linux & OSS PMV

No transport layer testing:

• Including the end-user/end-device networking stack is like Russian roulette

• i.e. TCP OS implementations are too varied and too complicated

• iPerf3 in UDP mode, only of if you have to

• Recent Improvements in UDP Packet Processing: UDP throughput went from

1.2 Mpps in Kernel 4.9 to ~2.25 Mpps in Kernel 4.13

• Two raw socket applications on Linux aren’t even the same

https://developers.redhat.com/blog/2017/06/09/the-need-for-speed-and-the-kernel-datapath-recent-improvements-in-udp-packets-processing/

How: Tooling Comparisons

Complexity Granularity

Trex

MoonGen

Pktgen

Etherate

How: Linux & OSS PMV

Etherate: Raw socket based Ethernet and MPLS packet generator

• Any layer 2/2.5 header value (load packet-as-hex fall back)

• Constraint based testing (time/speed/volume)

• Easy CLI usage (no API / not scriptable)

• Hardware agnostic

• Lowest performance

• Stateless

https://commons.wikimedia.org/wiki/File:Green_tick_pointed.svg

https://commons.wikimedia.org/wiki/File:Red_X.svg

https://github.com/jwbensley/Etherate
https://commons.wikimedia.org/wiki/File:Green_tick_pointed.svg
https://commons.wikimedia.org/wiki/File:Red_X.svg

How: Linux & OSS PMV

Pktgen: DPDK based packet generator using LuaJIT

• Most layer 2-4 header options (load PCAP as fall back)

• “Range” and “sequence” native features

• All options in CLI and Lua API (scriptable)

• Highest performance

• Requires DPDK supported NIC

• Stateless

http://pktgen-dpdk.readthedocs.io/en/latest/

How: Linux & OSS PMV

MoonGen: DPDK based packet generator using LuaJIT

• Any layer 2-4 header options

• No CLI options, scripted tests only (Lua API)

• Partially stateful

• High(er) performance

• Requires DPDK support NIC

• DPDK EAL settings are hidden

https://github.com/emmericp/MoonGen

How: Tooling Comparisons

• Etherate assumes two difference devices are being used.

MoonGen & Pktgen assume the Tx and Rx hosts are the same device.

• Etherate can be used to test a physical device or link at layers 2/2.5.

Pktgen & MoonGen can be used to test a physical device or link at layers 2-4

for high performing metrics (high throughput or low latency)

• Etherate can also test the raw socket path within the Kernel networking stack.

PktGgen & MoonGen can also provide some low level NIC stats.

Examples: NF Verification using OSS

Example resources/guides:

• Evolving document: Linux and NFV Testing and Tuning

• Example MoonGen Lua script: generate every Ethertype (0x0000-0xFFFF)

• “We can test every possibility in the lab”

https://docs.google.com/document/d/1YUwU3T5GNgmi6e2JwgViFRO_QoyUXiaDGnA-cixAaRY
https://gist.github.com/jwbensley/20f448908bfc7c77d4097dd3e8f64886

Examples: BUM filter accuracy

NIC: Intel I350 1G, DUT: Cisco 2960, Test: Etherate broadcast test

2960#show storm-control fa0/15

Interface Filter State Upper Lower Current

--------- ------------- ----------- ----------- ----------

Fa0/15 Forwarding 0.25% 0.25% 0.24%

$ sudo ./etherate -i eno2 -g -G -d FF:FF:FF:FF:FF:FF -M 250000

Seconds Mbps Tx MBs Tx FrmTx/s Frames Tx

1 0.24 0 20 20

2 0.24 0 20 40

Examples: Every Ethertype value

NIC: Intel I350 1G, DUT: Cisco 2960, Test: MoonGen “setType” ethertype

Rx NIC drops ~1400 frames, from etype 0x2F to 0x5DC, 0x8100, and 0x888e

Random missing Ethertype chosen and retested, 0x2F == 100% lost

Random working Ethertype chosen and retested, 0x2E == 100% received

0x2E-0x5DC are length values for 802.3 Ethernet + LLC/SNAP (802.2) framing

0x8100 (802.1q VLAN tag): 0 packets input, 65536 runts

0x888e (802.1X EAP): 65536 packets input, 0 errors/drops/runs/discards

“switchport mode access” / No 802.1X configured

Examples: Every Ethertype value

NIC: Intel X710 10G, DUT: ASR9001, Test: MoonGen “setType” ethertype

Rx NIC drops ~8500 Ethertypes

0x8808 (802.3x “pause”) 0 packets input, no NP counters

0x88a8 (802.1ad QinQ/PB), 0x9100 and 0x9200 (802.1q QinQ):

NP Counter: PARSE_DROP_IN_UIDB_TCAM_MISS

Examples: Every Ethertype value

NIC: Intel X710 10G, DUT: ASR9001, Test: Pktgen performance/size distribution

Pktgen:/> set 0 size 247

Pktgen:/> start 0

NP Counters:

PARSE_TOP_LOOP_RECEIVE_CNT 5987587286 6742449

MDF_PIPE_LPBK 5987589832 6742451

MDF_PIPE_LPBK_BUFFER_PREFETCH 2963853909 3371225

Example: In-flight bit errors

https://commons.wikimedia.org/wiki/File:Router.svg

CPE1 PE1 PE2 CPE2

Ethernet

IP

TCP

DATA

CRC

Checksum

Checksum

Ethernet

MPLS

Ethernet

IP

TCP

DATA

CRC

Checksum

Checksum

Ethernet

IP

TCP

DATA

CRC

Checksum

Checksum

MPLS is a transport protocol, not an encapsulation protocol:

https://commons.wikimedia.org/wiki/File:Router.svg

Example: In-flight bit errors

https://commons.wikimedia.org/wiki/File:Router.svg

CPE1 PE1 PE2

CPE2

Some vendors have NPU counters (which are exposed via SNMP):

• E.g. Cisco ASR9K: PARSE_DROP_IPV4_CHECKSUM_ERROR

• E.g. Juniper: bad-IPv4-hdr

No known tooling to test this end to end

Unprotected UnprotectedProtectedProtected Protected

https://commons.wikimedia.org/wiki/File:Router.svg

Example: NFV and COTS
Host VNF Paths VNF Considerations

NAT: slow and inflexible (L3/L4 only) These techniques are mostly agnostic

to the guest VM/application however

the Linux native networking stack is

slow(-ish)

Linux bridging: slow but flexible

PCI-PT: fast and flexible, but costly

SR-IOV: fast, flexible, cost efficient (not

perfect yet, e.g. VLANs/Multicast)

Requires VM/application support

Kernel-Bypass (DPDK/Snabb/NetMap);

fast, flexible, cost efficient

Proven technologies, limited

commercial support adoption

XDP and/or rDMA; native support for

Virtio on the horizon

Bleeding edge, immature for now

Example: NFV and COTS

Even with close source solutions we can peak into their performance:

• Open Process Counter Monitor – Intel focused

CPU/NUMA/PCI/RAM/Power performance profiling

• Perf “perf_events” – Kernel and application performance using Kernel

tracepoints and kropes/uprobes (and more!)

• SystemTap – Kernel and application performance profiling using Kernel

tracepoints and function calls/returns (and more!)

https://github.com/opcm/pcm
https://perf.wiki.kernel.org/index.php/Main_Page
https://sourceware.org/systemtap/

Future: Recap of work until now

Research from the past ~year has been presented

• Researched the existing problems (currently using ADE 651!)

• Evaluated the existing open source toolset

• Defining tests to detect known issues

• Trying to fill some gaps in test features

Combine all of the above into an open guide

for low level testing.

https://en.wikipedia.org/wiki/ADE_651#/media/File:ADE_651_at_QEDcon_2016_01.jpg

https://en.wikipedia.org/wiki/ADE_651#/media/File:ADE_651_at_QEDcon_2016_01.jpg

Future: Next steps / key takeaway points

• Evolving document: Linux and NFV Testing and Tuning

• Etherate; frame pacing, bit fiddling, frame checksums

• EtherateMT; coming soon for faster kernel path testing

• MoonGen & Pktgen: Fix RFC2544 test scripts and/or implement ITU-T Y.1564

• Document SystemTap, perf and OPCM examples

https://docs.google.com/document/d/1YUwU3T5GNgmi6e2JwgViFRO_QoyUXiaDGnA-cixAaRY

Future: Next steps (long term)

• Better equipped and experienced to implement and profile NFV and COTS

• Replace P nodes with VPP+FRR (or equivalent) on COTS for “quick win”

• P4 FPGA for reliable open source hardware tester replacement?

https://github.com/p4fpga/p4fpga

Future: Next Steps (even longer term!)

Linux already supports: IPv6 Segment Routing, VRFs, EVPN, MPLS, LDP

Linux native improvements:

• XDP and eBPF is already being used to provide fast packet processing

• SR-IOV switchdev could be used for routing?

• ~50-60ns IPv4 lookups (single core / DDR) barely supports 10Gbps

• ~450ns IPv6 lookups (single core / DDR)

Can we develop tools for testing the performance of these features?

https://www.netdevconf.org/2.1/session.html?bertin
https://www.netdevconf.org/2.2/session.html?gerlitz-sriov-bof
https://vincent.bernat.im/en/blog/2017-performance-progression-ipv4-route-lookup-linux
https://vincent.bernat.im/en/blog/2017-ipv6-route-lookup-linux

Questions?

Contact me using these details:

• Email: jwbensley@gmail.com / james.bensley@updata.net

• Slack: http://networktocode.slack.com/

• Skype: jameswbensley

mailto:jwbensley@gmail.com
mailto:james.bensley@updata.net
http://networktocode.slack.com/

Extra: Easily testable bugs

Example bugs which could have been easily caught with better testing:

• PPPoE unsupported over L2VPN (undocumented ASR920 core encapsulation)

• Interop LDP PWE3 label request (IOS-XR CSCux80490)

• LPTS denying OSPFv3 incorrectly (IOS-XR CSCui29635)

• NPU cache misses causes 33% performance drop (IOS-XR CSCvf44769)

Extra: SIG-PMV overlap with IETF

• IETF: Benchmarking Methodology Working Group:

“…the BMWG is limited to the characterization of implementations of various

internetworking technologies using controlled stimuli in a laboratory

environment. Said differently, the BMWG does not attempt to produce

benchmarks for live, operational Networks…”

https://datatracker.ietf.org/wg/bmwg/about/

https://datatracker.ietf.org/wg/bmwg/about/

