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"Look Mum, No Unit Tests!"
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Background

First sustainable connectivity provider in the world

Fully automated connectivity services

Fully transparent services (pricing, operation, status)

Are we playing "buzz word bingo" James?













Problem Statement

Status-quo: "Auto-magic everything"

Migration to fully automated operations is a "journey", even for green-field

What are the questions you need to be asking if you're new to software 
and development? 

Spoiler: we can re-use our lessens learned from networking



Data Modelling

How: the "Lego bricks" approach



Data Modelling

What: Implicit vs explicit modelling 

Where: Global IDs

When: Data validation (as close to source as possible)

Why: multiple sources can feed into a SSOT



Tech Stack

When to have a single application per role (scalability vs extensibility)?

Consider your user-base (they're technical, but maybe not dev's)?

Try to reduce lock-in / tech-debt

Network centric examples are NetBox, Ansible, and Jinja2



Tech Stack

Easy to deploy

Easy to use

Easy to integrate

Creates massive tech-debt
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Tech Stack

What is practical? Full config replace vs partial config

Fragility vs issue masking

Clear: Source of Truth → Network
Not clear: Network→ Source of Truth



Coding

Agree on an overall framework (coding style, contribution guidelines)

Use linting and style tools to establish a consistent style

Use pull/merge requests to establish the contribution process,
start with "non-blocking"

What are sensible defaults?



Coding

Documentation - where will it live and what will it cover?



Testing

Test coverage is a never ending story, work out what is "reasonable" for you

CI pipelines help to automate the testing process, start with "non-blocking"

Start with small unit tests 

Create a simulation environment with production data



Debugging

Logging/monitoring

Write human friendly error messages

Fail-safe



Questions?
james@inter.link


