
Software Best Practices for Networkers

James Bensley 
03.04.2023

"Look Mum, No Unit Tests!"



Testing

Problem Statement

Tech Stack

Coding

AGENDA

Data Modelling

Questions

Debugging

Background



Background

First sustainable connectivity provider in the world

Fully automated connectivity services

Fully transparent services (pricing, operation, status)

Are we playing "buzz word bingo" James?













Problem Statement

Status-quo: "Auto-magic everything"

Migration to fully automated operations is a "journey", even for green-field

What are the questions you need to be asking if you're new to software 
and development? 

Spoiler: we can re-use our lessens learned from networking



Data Modelling

How: the "Lego bricks" approach



Data Modelling

What: Implicit vs explicit modelling 

Where: Global IDs

When: Data validation (as close to source as possible)

Why: multiple sources can feed into a SSOT



Tech Stack

When to have a single application per role (scalability vs extensibility)?

Consider your user-base (they're technical, but maybe not dev's)?

Try to reduce lock-in / tech-debt

Network centric examples are NetBox, Ansible, and Jinja2



Tech Stack

Easy to deploy

Easy to use

Easy to integrate

Creates massive tech-debt



Backend Cortex

ERP, CRM, 

LoA, CO2

Network 

Hardware 

DCIM, IPAM

Config 

Versioning & 

Validation

PeeringDB

Tech Stack

IRR Data
Templates & 

Deployment

RPKI Data

Web Portal

API



Backend Cortex

ERP, CRM, 

LoA, CO2

Network 

Hardware 

DCIM, IPAM

Config 

Versioning & 

Validation

PeeringDB

Tech Stack

IRR Data
Templates & 

Deployment

RPKI Data

Web Portal

API

API

API API API API API API

API

API

API

API

API



Tech Stack

What is practical? Full config replace vs partial config

Fragility vs issue masking

Clear: Source of Truth → Network
Not clear: Network→ Source of Truth



Coding

Agree on an overall framework (coding style, contribution guidelines)

Use linting and style tools to establish a consistent style

Use pull/merge requests to establish the contribution process,
start with "non-blocking"

What are sensible defaults?



Coding

Documentation - where will it live and what will it cover?



Testing

Test coverage is a never ending story, work out what is "reasonable" for you

CI pipelines help to automate the testing process, start with "non-blocking"

Start with small unit tests 

Create a simulation environment with production data



Debugging

Logging/monitoring

Write human friendly error messages

Fail-safe



Questions?
james@inter.link


