
Service Oriented Network Operations using
Abstraction and Automation

Document History

Versio

n

Date Updated Updated By Comments

0.1 Sept 2015 James Bensley First draft

0.2 Aug 2016 James Bensley Updated glossary

Document Distribution
This document is distributed under the GNU FDL v1.3, classification is

unclassified, please reuse and reference the contents as you desire.

Author contact: jwbensley@gmail.com.

Version 0.2 – Last updated August 2016 Classification: unclassified

mailto:jwbensley@gmail.com

Contents

Service Oriented Network Operations using Abstraction and Automation

Document History

Document Distribution

Contents

Glossary

1. Introduction

1.1 Purpose of This Document

1.2 Background to the Problem

2. Operational Abstraction and Automation as the Solution

2.1 A Single Source of Truth

2.2 Implementing Abstraction

2.3 Business Drivers for Abstraction and Automation

3 Methodology Overview

3.1 Resource Data Management

3.2 State Management

3.3 Abstracting Network State

3.4 Abstracting Network Telemetry

4 Technology Overview

4.1 Device Management Protocols

Version 0.2 – Last updated August 2016 Classification: unclassified

Glossary
API Application Programming Interface

BoM Bill of Materials

CDN Content Delivery Network

CLI Command Line Interface

DoA Dead on Arrival

EoL End of Life

EoS End of Sale

IPAM IP Address Manager

ISP Internet Service Provider

MSP Managed Service Provider

NOC Network Operations Centre

NFV Network Function Virtualisation

PEW Planned Engineering Works

SLA Service Level Agreement

SDN Software Defined Networking

TISP Telephony Internet Service Provider

VLAN Virtual Local Area Network

Version 0.2 – Last updated August 2016 Classification: unclassified

1. Introduction

1.1 Purpose of This Document
This document aims to inform the reader about the potentially huge resource savings a
company can achieve if it migrates to an agile and automated operating paradigm. Such a
company would have its operations and products heavily focused on networking like an
ISP/TISP, MSP, CDN, colocation provider, cloud platform provider etc. The reason the benefits
can be so large with this paradigm shift is because the traditional paradigm of network
operators has been to optimise operations reactively instead of proactively and to set
operational goals that are just about achievable and then to simply meet them, but rarely
exceed them or continually increase them.

By the end of this document the reader should have a fair understanding of operational
improvements that can be achieved, the methods that can be used to deliver those
improvements, and the technologies available which underpin the methods.

SDN and NFV are out of scope of this document. This document is about network
programmability, operational abstraction and agile network operations. This are the building
blocks that can in turn be used to provide SDN and NFV services as a separate exercise.

Version 0.2 – Last updated August 2016 Classification: unclassified

1.2 Background to the Problem
The most widely performed tasks within the networking world are manual tasks which are
laboriously repeated again and again. Examples include writing devices configurations by hand
or applying changes to devices on the CLI. Many networking companies have groups of
employees whose sole job function is to write configuration files in a text editor or raise
changes and apply device configurations. A scarily high number of wealthy and successful
companies perform every step of the service delivery process from ordering through to
operational handover manually. Many networking providers scale out their operations
horizontally; “employing more people allows us to deliver more services” is a linear
methodology offering no efficiency gains at all.

Many networking providers will reach a point when a simple linear approach to scaling is no
longer financially sustainable; the constant drive to lower customer facing prices means that
the ratio of “requirement vs. effort” must also decline. As an example; a 10:1 ratio of demand to
delivery effort (10 services delivered per month by 1 engineer) assuming a suitable operating
profit, will likely not be acceptable 24 months later when the demand has double meaning the
delivery effort required has doubled too. Moving from 10 engineers delivering 100 services a
month to 20 engineers delivering 200 services a month, whilst continually reducing customer
facing prices and without losing operating profits is difficult. The target for network operation
innovation should be to shift the ratio of requirement vs. effort from 10:1 to 100:1, to 1000:1,
whilst increasing profitability and reducing customer facing pricing.

For a typical networking operator today trying to reduce operational costs without losing
revenue and scale out operations, they will face barriers in efficiency similar to the following;

● Linear resource scaling (e.g. throwing more engineering resource at the problem)
● Tracking operational data manually by hand (e.g. capacity planning)
● Operational data accuracy (i.e. which customers are using this service?)
● Long lead times on service delivery (i.e. streamlining recurring tasks)
● Inconsistent service delivery (e.g. engineers/project manager’s unique working style)

The inefficient operations of networks today aren’t solely a technical issue that can be
automated away, such as making changes to network devices automatically instead of by
hand, or using an IPAM to allocation IP addresses and VLANs automatically instead of by
hand. It is implicitly tied into the business operations and procedures that dictate how the
network is managed.

Version 0.2 – Last updated August 2016 Classification: unclassified

Legacy procedures involving change control management, provisioning processes, resource
tracking etc. all need to be tired into the overall shift to automation. This is a complete
paradigm shift, not just a technical shift to automation; for most businesses different
departments within the same business operate using a totally different paradigm. For example;
the change board maybe focused on service impact risk and completely disconnected from
compliance and auditing, delaying an urgent security upgrade to keep one customer happy
whilst risking the service of many more customers. Equally a NOC maybe focusing on
monitoring and recording as much data as possible to better capture network events as they
happen, but not actually correlating them to the underlying service, carrier, supplier,
deployment etc. One unified service oriented paradigm shift is required by all BUs to achieve
the maximum efficiency improvement.

Version 0.2 – Last updated August 2016 Classification: unclassified

2. Operational Abstraction and Automation as the Solution

2.1 A Single Source of Truth
Automation of network operations depends on the business having well defined service models
(exactly what their products are, the required components, their SLAs, expected performance,
any restrictions to these services etc). Well defined service models should be backed up with
well defined procedures that define the delivery, maintenance, and decommissioning of a
service.

Service templates can be created which capture the required data to deliver a service (IPs,
VLANs, circuit type, speed, etc) and link that data with a service model and a procedure. This
allows the delivery teams to operate a “cookie-cutter” deployment process (meaning rapid,
consistent and reliable service delivery).

The service planning and delivery life cycle usually starts when an order is accepted from a
customer. This means that from the point of sale acceptance what has essentially been sold
are service catalogue items that infer a set of service templates that need to be executed (a list
of predefined service models, the data required for those models, and an accompanying list of
which procedures must be completed to fulfil the service live criteria for those services sold).

A sales record and any data required for the service delivery should ideally be stored in one
central system. Any system which is to efficiently automate network operations has one central
place to lookup and update with regards to all this information. This central data storage
location becomes the single source of trough for all network operations.

Version 0.2 – Last updated August 2016 Classification: unclassified

2.2 Implementing Abstraction

By creating well defined layers of abstraction in network operations a service oriented
operational paradigm can be implemented. Having a service oriented paradigm built on layers
of abstraction provides a more flexible workflow which allows for greater operating efficiency.
This is achieved by disaggregating operational dependencies from service deliverables; for
example, configuring customer connectivity on device using a vendor agnostic system means
that any engineer can perform this task without prior knowledge of that device.

The most optimal implementation method in terms of efficiency to support a service oriented
paradigm, is to have a programmatic network that uses software to automate its operations.
Using software to automate all operations provides the highest levels of efficiency and data
accuracy with the lowest level of overhead.

To have a programmatic network means that the network devices are configured and
monitored by software processes (preferably through an API but also via the CLI) not manually
by humans. From a technical perspective a common method for achieving this is to treat the
network device configuration like software code and use similar tools that software developers
use to manage code to manage device configuration.

Version 0.2 – Last updated August 2016 Classification: unclassified

2.3 Business Drivers for Abstraction and Automation

The operating costs of the business can be reduced through the following improvements if
implemented with net-ops automation:

Reducing OpEx:

● Reduce change and maintenance planning overhead: automated service impact
assessments can be generated which automatically seek peer review and change
management approval from the required parties when changes are submitted.

● Reduce communications overhead: when changes are approved or supplier
maintenance is scheduled automatic change/PEW notifications can be dispatched.

● Reduce failed change frequency: each change that is scheduled and approved can be
automatically tested in a sandbox and rejected if the tests fail.

● Reduce overtime/out-of-hours work: network changes can be scheduled to run in

advance of the required delivery date and unattended.

● Reduce self inflicted disruption: when changes are performed automatically tests to
measure the change success can be automated with pass and fail criteria that can
result in an automated rollback.

● Reduce SLA breaches: automatic tests for each element of a service can be scheduling
to run periodically for an indefinite period. When a testing threshold is breached the
required recovery actions can be applied automatically.

● Reduce new hardware/software onboarding: testing of new vendor hardware or
software features can be performed automatically to reduce the time required to
approve upgrades or new deployments.

● Reduce unexpected opex: a real time estate inventory can be used to produce reports
on devices reaching the end of their supplier support contract, devices nearing vendor
EoS/EoL announcements and audit against security and bug releases.

Version 0.2 – Last updated August 2016 Classification: unclassified

Reducing CapEx:

● Reduce vendor software lock-in: by abstracting the control plane and management
plane of network devices a vendor agnostic management and monitoring approach can
be taken meaning vendor specific tooling is no longer required.

● Reduce vendor hardware lock-in: by abstracting the control and management plane of
network devices any vendor can be used which provides the required features for the
business at the best price point (there is no need to factor in staff training for specific
vendor technologies or learning new vendor configuration syntax).

In addition to reducing costs, by standardising as many operational processes as possible and
automating them to remove any variance in the execution of those processes, the exact costs
of each operation can be quantified to provide precise forecasting.

Automation is primarily built upon a company having clearly defined operating processes and
having all company’s operating data stored in a central authoritative system (the “Single
Source of Truth”). By taking a company through the process of migrating to an agile and
automated operating model the following improvements are achieved:

● Creating a uniform service catalog; to automate service delivery the company must
know exactly what services they have sold and are currently selling, a service audit
helps to record any bespoke services and reduce the service catalogue deviation.

● Delivering assured services: to deliver any service automatically at scale the service
must be defined in detail including any constituent service components so that it can be
templated and repeatedly delivered with minimal variation in provisioning and
operation. This increases technical consistency (device configuration, naming
conventions, software versions etc.) which guarantees that the services being
automatically delivered can be supported.

● Reduce variance in process execution; by standardising and automating operational
processes to provide deterministic results there is a reduction in variance when
projecting deadlines or providing customer quotations and adhering to them.

● Service compatibility; abstraction allows for devices to be queried in a vendor-agnostic
manner to ensure they support a proposed new service or change to an existing
service, before that action is processed. This also ensures at the point of sale that
services are being sold where they can definately be delivered. If there is gap between
the current infrastructure and the required infrastructure to deliver a new service this
can be exactly identified (and reported in the form of a BoM for example).

Version 0.2 – Last updated August 2016 Classification: unclassified

● Deliver direct to service handover; by using a templated service delivery process and a
templated service testing process, new services can provisioned, tested and brought
into operational acceptance for customer handover all in a single automated action.
This reduces DoA service deliveries and brings the service acceptance testing
coverage closer to 100%.

● Accurate service impact assessments: by automating changes funnelled through a
central source of truth, precise service impact assessments can be generated using
real-time service deployment stats for planned engineering and change works.

● De-risk changes: network maintenance operations and BAU activities that are
templated and automated can de-risk the human error factor. In addition to this
automatic staging of changes can more accurately gauge the expected impact of a
change.

Network abstraction and programmability can also be used to achieve the following technical
advantages:

● Supportability; by only delivering templated services and through a central provisioning
system there is a reduction in bespoke and poorly documented solutions meaning the
supportability of the live service estate moves closer to 100%.

● Mean time to deliver; automating each step of the provisioning process means
(near-)zero touch provisioning can be implemented to scale up service delivery with a
reduce overhead.

● Reduce time to market; agile operational processes that use automation and
abstraction reduce the time it takes to bring a new service to market by supporting the
additional of a new service without needing to extend the existing framework or any
processes.

● Mean time to fix; by defining structured services the troubleshooting process can be
refined and automated to provide rapid fault detection and resolution against externally
sourced impacts to service.

● Mean time to recover; by abstracting device configuration from operating state
(off-device if required), automatic configuration checks and rollbacks can be
implemented on devices with no native support, reducing the time to recover from
internally sourced service impacts.

● Mean time between errors: by abstracting network device configuration to a single
vendor agnostic format built from service templates, there is no need to write complex
multi-vendor device configurations which increase the risk of mistakes. In addition to
this devices that do not support candidate configurations and syntax checking natively,

Version 0.2 – Last updated August 2016 Classification: unclassified

this can be achieved off-device.

● On-time capacity planning: by using a central authoritative system to deploy and
manage network services (near-)real time capacity planning can be achieved to more
accurately manage capacity and failure requirements.

● Guarantee network state: changes made through automation using transactional
change management reduce the level of unknown state in the network ensuring the
“single source of truth” is accurate.

● Recurring events: network change actions such as ACL updates or peering updates
can be scheduled to run repeatedly and unattended.

● Reduce resource constraints: customer orders or BAU changes can be scheduled for
automatic unattended completion at times that satisfy customer maintenance
agreements or operational “quiet times” without the need for available human resource
or CAB.

Strategy and governance of the network can be formulated by using network abstraction and
automation to gather operational intelligence:

● Continual accreditation compliance: configuration reports can be generated
automatically on a recurring schedule to check devices for compliance breaches. Any
remedial actions can also be implemented automatically.

● Business performance: metrics of operations can be automatically created, gathered
and analysed. These can be used to report on service performance or find
imperfections in the order-to-handover cycle and assist in setting and meeting realistic
improvement targets.

● Customer and supplier integration: having a high level of data accuracy in an organised
hierarchy means that both customers and suppliers can integrate by exposing an API to
them.

Version 0.2 – Last updated August 2016 Classification: unclassified

3 Methodology Overview
It is outside the scope of this document however it is implied that a clear service catalogue of
network services exists and the data requirements specific to the business to deliver those
service catalogue items are already known.

3.1 Resource Data Management
It must be known in advance what data is required for the day to day operations of the network
and what the upper and lower bound limits of those data sets are. This allows for a central
system to be designed and implemented which can be used to store, access and update the
data in real-time and provide accurate capacity analysis of all assets and resources.

Even when using tightly controlled processes it can still be difficult to ensure that the data
stored regarding logical and physical resource usage and assignment is accurate, current and
not contributing to data duplication. Probably the most ideal approach is the creation of a
schema unique to the business that supports its operational data requirements which is then
updated by indefinitely running automated task which scans the live estate and resource
database and correcting any discrepancies.

Below are some examples of the required data sets the logical and physical resources
manager could track:

● Resources (IPAM): Ideally in any modern network this should include many resources
beyond basic IP addresses, any logical resource with a finite availability that needs to
be assigned for a service needs to be checked for availability and then reserved. These
are typical global logical resources, for example;

○ AS Numbers
○ IPv4 & IPv6 addresses
○ VRFs (potentially using the Assigned Number subfield as the key)
○ Route Targets
○ VLANs (QinQinQ... support)
○ Bridge/Broadcast Domains
○ EVC / EFP ID
○ VFI / VSI / EVI ID (for VPLS / EVPN / PBB)
○ Virtual Circuit IDs (pseudowire IDs)
○ Static MPLS Labels
○ Global SIDs (for Segment Routing)
○ Logical interface IDs (tunnel IDs / subinterface number)
○ Frequency / wavelength

Version 0.2 – Last updated August 2016 Classification: unclassified

● Assets: As with the “IPAM” any physical resource that needs to be reserved must be
accounted for so that availability of physical resources can be tracked and forecasted. It
might make sense to track these physical resources separately to the logical resources
above as these likely change less frequently or reach capacity as quickly as logical
resources (devices are rarely deployed at 90% capacity for example).

Ideally this would also include logical resources that are platform dependant and not
global;

○ Chassis slots / MPCs / MPAs / SPAs / expansion modules
○ Physical ports / plugables / patch panel ports / PDU sockets
○ Rackspace / floorspace
○ Power / UPS capacity
○ Airflow

Version 0.2 – Last updated August 2016 Classification: unclassified

3.2 State Management
The operating state of a network device is usually derived from configurational state data being
stored on it. By abstracting vendor specific configuration syntax into a vendor neutral format
the configurational data for the network estate can be automatically and dynamically generated
by data that is pushed/pulled from central BSS/OSS systems. This can then be translated to
the a vendor specific syntax if required, before being applied to a device.

No operational state changes should be made without configurational state changes to infer
that operational state. By having a separation between configuration state data and operating
state data any proposed operational state change which will be derived from new configuration
data can first be validated before being implemented. Operating state can be changed without
a config change though. If this introduces a problem or the desired operating state is simply not
achieved, then there might not be an audit trail of how the current operating state was reached
or what needs to be reversed to revert back to desired operating state.

For example an ordering system API can feed data into an operational API to generate device
configuration state. In this case the central BSS systems could provide the central source of
truth for the network operations. Device configurational state derived from the BSS systems
can be stored in a central atomic change database. Configuration data in this central store can
be compared against the running configuration of network devices and pushed to the running
configuration if discrepancies are found (a new “service” is added to the device). Finally the
operational state of devices can be checked to confirm if the desired operating state has been
implemented based on the configuration data applied to the device (ultimately changes are
being sourced from the BSS system in this example which might not be ideal).

A finite state machine can be used to manage the process of configuration state updates,
publications and implementations. This can be coupled with a tight control loop used to move
through state machine but also allow the FSM to be restarted and resume from where it left off
without issue (meaning that network configuration change events idempotent and the device
stats are atomic).

As an example of this, if the BSS/OSS systems provide the central south of truth for the
network estate and a change in the central system is made “provision interface X on device Y
for customer Z”, this could result in a push to an automation engine API. The engine could then
update a centrally stored vendor neutral configuration file in an atomic database using the
information parsed from the BSS/OSS system. The configuration changes (either added due to
a new interface being used, or altered due to using an preconfigured interface) have the
intention of changing the devices operational state to that which matches service catalogue
item N (ideally templates exist for all service catalogue items so that the outcome is
predictable). This means the central configuration file is build from the BSS/OSS systems
passing service specific details to the engine which can fill out service catalogue templates

Version 0.2 – Last updated August 2016 Classification: unclassified

creating a whole device configuration file that is simply a collection of service templates. The
central automation engine can then either push the configuration to the device in a vendor
neutral form if supported or use conversation templates if required to produce vendor specific
configuration.

When a change is made to the configuration of a device the change should idempotent.
Continuing the example of “provisioning interface X on device Y”, generating the configuration
for interface X and pushing the configuration to device Y might work for an interface in a
default state or known prior state and the generated configuration will transition the interface to
the desired operational state. If the interface state is unknown or transitioning from a
non-default state either the current running interface configuration must be factored in and the
difference between the current configuration state and desired state must be used to produce a
transitional config snippet to be applied, or the config generated to provision interface X must
replace the existing configuration on the interface in its entirety. In the case that the currently
running configuration is factored in this would ideally come not from the live device but from the
central configuration database. By always altering this configuration and pushing it to a device,
from this central location the entire estate configuration can be searched, updated and
validated centrally. This would require that changes made directly to devices are disabled so
that all configuration changes come from the central system only so that it is always an
accurate reflection of the entire estate operations.

If the method of pulling the running configuration from the device is used to then generate a
transitional configuration some logical is required that is aware of vendor specific configuration
syntax for each vendor deployed on the network, to calculate the required transition. In the
case a vendor agnostic configuration syntax is being used then “only” a single interpretation
function would be required (hopefully, there is the possibility that different device generations
of devices will use different interpretations of the same vendor agnostic syntax). If the central
configuration database is updated the entire device configuration can then be replaced and all
that should have changed is the configuration for interface X. A diff can be generate to check
this. By pushing the entire device configuration using a replace and not a merge operation the
device state is enforced and the change becomes idempotent. This can also be wrapped into
an atomic change action to ensure it does happen.

Version 0.2 – Last updated August 2016 Classification: unclassified

3.3 Abstracting Network State
To create a programmable network the configurational state of the network must be
abstracted and preferably centralised. Network configuration can be split into phases:

1. The intended state of the network can be derived from service templates after they
have been populated with the service variables from the BSS systems. This is then
pushed to the network devices to actualise the desired services.

2. The operational state of a network device must then be verified against the intended
configuration to check for discrepancies.

Some device vendors support vendor agnostic configuration formats and some do not. Also
some devices support different methods of device configuration. In order to provide a method
of creating intended device configuration that is agnostic of any vendor specific syntax, and to
apply and verify that configuration over a variety of technologies, abstracting those processes
through translation to a neutral format and action set allows for them to be simplified and
standardised for programmability.

CHECKING: This can happen in two main methods. Firstly the proposed configuration
changes can be applied to a staging environment so that the operational changes inferred can
be checked that they match the desired operational state changes that lead to the new
configuration data being generated. This provides explicit test of the proposed config changes.
Secondly a syntax check can be performed. By applying the configuration to a staging
environment the syntax of the change is checked (not just any vendor specific syntax such as
CLI commands but also that the data supplied to correct, no IPv4 address with decimal 300 in
an octet it or a VLAN ID over 4096 etc). By using some more structure data models such as
YANG modules the configurational data can also be validated to the syntactically correct
before it is sent to the production devices without requiring a staging device for every device
type deployed on the network.

3.4 Abstracting Network Telemetry
After a network devices has been correctly configured to deliver a service the device and
service should now be monitored. As with network configuration the monitoring and telemetry
of a network device or service can be abstracted to provide a standardised method that is
vendor agnostic and programmable.

Version 0.2 – Last updated August 2016 Classification: unclassified

Version 0.2 – Last updated August 2016 Classification: unclassified

4 Technology Overview

The following series of tables provide an overview of the different technologies currently
available the can be used to provide the methods described in Section 3.

4.1 Device Management Protocols

System/
Vendor

Min*1

Version
for YANG

Config and State Protocols and
Transport Methods

Notes

Alcatel
Lucent

 ● CLI over SSH
● SNMPv3
● XML over NETCONF over SSH

Brocade ● CLI over SSH
● SNMPv3
● XML over NETCONF over SSH

IOS-XR
(Cisco)

6.0.0 ● CLI over SSH
● SNMPv3
● XML over NETCONF over SSH
● XML over RESTCONF over

HTTPS/1.1
● JSON over RESTCONF over

HTTPS/1.1
● JSON over gRPC over HTTPS/2
● CLI over gRPC over HTTPS/2

ASR9000s and NCS5000s:
Actually YANG support
started in 5.3.0 however
6.0.0 supports 150+ Cisco
YANG models, pre- 6.0 the
support is poor, 6.1.1 brings
OpenConfig support.

IOS-XE
(Cisco)

16.4 ● CLI over SSH
● SNMPv3
● XML over RESTCONF
● XML over REST API on

CRV1000V only?I

Starts in 16.3 but 16.4
covers more devices.

IOS
(Cisco)

? ● CLI over SSH
● SNMPv3
● XML over NETCONF over SSH
● XML over NETCONF over BEEP

Manual testing on a 1941
running 15.3M shows some
basic support is present for
Cisco YANG models but no
documentation online and it
was very buggy.

NX-OS 7.x ● CLI over SSH This is for Nexus 9Ks and

Version 0.2 – Last updated August 2016 Classification: unclassified

(Cisco) ● SNMPv3
● XML over NETCONF over SSH
● XML over RESTCONF over

HTTPS/1.1
● JSON over RESTCONF over

HTTPS/1.1
● GPB over gRPC over HTTPS/2

3Ks, the 5Ks and 7Ks are
still pending.

Junos
(Juniper)

16.1 ● CLI over SSH
● SNMPv3
● XML RPC over NETCONF over

SSH
● JSON over REST API

Actually YANG support
started 14.1 but
configuration only until 16.1:
http://www.juniper.net/docu
mentation/en_US/junos16.1/
topics/task/operational/netco
nf-yang-module-obtaining-an
d-importing.html
15.1 for REST API support.

*1 NETCONF has been supported on many platform before vendors started producing their
vendor specific YANG models. So this is minimum version that supports both NETCONF and
YANG.

NMS and Streaming Telemetry

Operations Feature Transport Consumer

Streaming Telemetry GPB over UDP

 GBP over gRPC
over HTTPS/2

 JSON compressed
over TCP

Device
Vendor

Southbound
API Driver

RPC
Method

Transport Homepage

Vendor
Support

Notes

Any NCClient XML NETCONF https://github.co
m/ncclient/nccli
ent

3rd Party
Open
Source

Vendor
agnostic
XML
RPC

Version 0.2 – Last updated August 2016 Classification: unclassified

http://www.juniper.net/documentation/en_US/junos16.1/topics/task/operational/netconf-yang-module-obtaining-and-importing.html
http://www.juniper.net/documentation/en_US/junos16.1/topics/task/operational/netconf-yang-module-obtaining-and-importing.html
http://www.juniper.net/documentation/en_US/junos16.1/topics/task/operational/netconf-yang-module-obtaining-and-importing.html
http://www.juniper.net/documentation/en_US/junos16.1/topics/task/operational/netconf-yang-module-obtaining-and-importing.html
http://www.juniper.net/documentation/en_US/junos16.1/topics/task/operational/netconf-yang-module-obtaining-and-importing.html

over
NETCON
F

Juniper
(Junos)

pyEz XML NETCONF https://github.co
m/Juniper/py-ju
nos-eznc

Juniper Vendor
specific
Python
classes

Cisco
IOS-XR

iosxr-eznc XML NETCONF https://github.co
m/mirceaulinic/i
osxr-eznc and
https://github.co
m/mirceaulinic/n
apalm-iosxr-rpc

3rd Party
Open
Source

Still
under
develop
ment, not
usabel
yet,
ncclient
in the
backgrou
nd

Cisco
IOS-XR

pyIOSXR CLI SSH https://github.co
m/fooelisa/pyios
xr

3rd Party
Open
Source

Wrapper
for CLI
access,
can send
individual
XML
RCP
reuests,
uses
Netmiko
for
transport

Cisco
IOS

Netmiko CLI SSH, Telnet https://github.co
m/ktbyers/netmi
ko

3rd Party
Open
Source

Wrapper
for CLI,
Paramiko
in the
backgrou
nd

 RESTC
onf

HTTP/S

 gRPC

Data Libraries

Version 0.2 – Last updated August 2016 Classification: unclassified

https://github.com/mirceaulinic/iosxr-eznc
https://github.com/mirceaulinic/iosxr-eznc
https://github.com/mirceaulinic/iosxr-eznc

Application/Lib
rary

Description Homepage Vendor
Support

Notes

Jinja2 Templating
engine for
Python

http://jinja.pocoo
.org/

3rd Party Open
Source

YAML Python can
natively import
YAML files as
dictionaries

Pyang Validates YANG
models and
converts them to
tree/XML/JSON/
etc

https://github.co
m/mbj4668/pyan
g

3rd Party Open
Source

PyangBind Extends Pyang
to generate
Python classes
from YANG
models

https://github.co
m/robshakir/pya
ngbind

3rd Party Open
Source

YDK-gen Generates an
API from YANG
models (using
Pyang)

https://github.co
m/CiscoDevNet/
ydk-gen

Cisco

YDK-Py Generates
Python classes
from YDK-gen
API output

https://github.co
m/CiscoDevNet/
ydk-py
Samples:
https://github.co
m/CiscoDevNet/
ydk-py-samples

Cisco Provide client
side validation
of configuration
against the
YANG model

Cisco YANG
Models
(IOS-XR/IOS-X
E/NX-OS)

 https://github.co
m/YangModels/
yang/tree/maste
r/vendor/cisco

UI YANG Browsers:
https://github.com/CiscoDevNet/yang-explorer
https://github.com/CiscoDevNet/yangman

Version 0.2 – Last updated August 2016 Classification: unclassified

http://jinja.pocoo.org/
http://jinja.pocoo.org/
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/robshakir/pyangbind
https://github.com/robshakir/pyangbind
https://github.com/robshakir/pyangbind
https://github.com/CiscoDevNet/ydk-gen
https://github.com/CiscoDevNet/ydk-gen
https://github.com/CiscoDevNet/ydk-gen
https://github.com/CiscoDevNet/ydk-py
https://github.com/CiscoDevNet/ydk-py
https://github.com/CiscoDevNet/ydk-py
https://github.com/CiscoDevNet/ydk-py-samples
https://github.com/CiscoDevNet/ydk-py-samples
https://github.com/CiscoDevNet/ydk-py-samples
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/CiscoDevNet/yang-explorer
https://github.com/CiscoDevNet/yangman

Add references for…

OpenContrail
OpenDaylight Controller

IPAMs;
NIPAP
NetBox
NSoT https://github.com/dropbox/nsot
phpIPAM

Git: maintaining and enforcing state drift in an idempotent way
GitLab

Maintenance portal

Version 0.2 – Last updated August 2016 Classification: unclassified

