
What Does A Good Design
Look Like?

Some DOs and DON’Ts of technical design

Agenda
● Introduction
● Engineering Doesn’t Require Complexity
● Engineering Requires Understanding
● Design Decisions and Examples
● Summary and Review
● Questions / Insults / Solicitations

Introduction
● This talk is not “how to produce a good design” – “how” is specific to the

customer’s technical requirements and what you are able to deliver/support

● This is “technically agnostic guidelines any generic design should follow”

● Why? – I’ve designed, implemented and supported many solutions over the
years and it’s often too late when you discover a problem. This talk highlights
how one can improve a solution design whilst still in the design phase (before
it’s too late!) based on my own stressful experiances

Introduction
● All of the examples in this talk are real experiences from networks and

projects I have worked on

● Sadly, I have many more examples and I continue to see the same issues

● The single biggest problem I continually see is technical overcomplication

Engineering Doesn’t Require
Complexity

Engineering Doesn’t Require Complexity
● “Engineering” is typically associated with “technical complexity” – this is the

biggest issue with engineering and design work

● Many respected figures agree:
○ “Simplicity is the ultimate sophistication.” – Leonardo da Vinci
○ “Simplicity is a prerequisite for reliability.” – Edsger Dijkstra
○ “E=MC2” - Anon

● KISS

Engineering Doesn’t Require Complexity
● The technical aspects of your job are rarely the most demanding.

It’s tough working in teams with:
○ mixed skill sets
○ mixed technical abilities
○ mixed availabilities
○ mixed [communicative] language proficiencies

● Techies don’t need to memorise $really_complex_thing

Engineering Doesn’t Require Complexity
● Engineers/Architects/Designers/Technicians need to be multifaceted and

pragmatic. The E/A/D/T job is to translate between business requirements
and reasonable technical methods

Engineering Requires
Understanding

Engineering Requires Understanding
No solution design can implement, maintain and support itself. Every solution
creates strain on different business resources, engineers need to balance the
impact of their solution across the BUs.

Engineering Requires Understanding
210BC, ancient Chinese networkers followed the proverb:
如果您正在閱讀本文，那麼您正在使用Google翻譯！

Which roughly translates to:
“Good” designs are formulated by compiling the results from a collection of
decisions. The result of each decision is the most balanced option between the
impacted BUs of that decision.

Engineering Requires Understanding
For example; “which vendor should we use for project X?”

● One has to balance each of:
○ Cost (to please finance)
○ Lead time (to please project management)
○ Vendor SLAs (to please account managers)
○ Complexity (to please support teams)
○ Functionality (to please customers)
○ Compliance (to please auditors)
○ Standardisation (to please implementation teams)

Design Decisions
and Examples

Design Decisions: Requirements and Cost
● DO: Design a network implementation that satisfies the customer/business

technical requirements

● DON’T: Design what you think would be like, so cool, yeah, like OMG!

● DO: Keep in mind the budgetary constraints

● DON’T: Search for the cheapest possible solution

Example Scenario: Requirements

● A 100Gbps link would have 85%
wasted capacity

● Do we have 100G tester and optics?

● Can easily add more 10Gbps links

● 10Gbps already “known” to operations

“I need 15Gbps of connectivity from A to B”

2x10Gbps 1x100Gbps

Example Scenario: Cost

● 100Gbps port and optics aren’t cheap

● 100G rental is more expensive

● 10Gbps port and optics are cheap

● 10Gbps rental is cheap

“I need 15Gbps of connectivity from A to B”

1x100Gbps2x10Gbps

Design Decisions: Scope and Deliverables
● DO: Clarify in as much detail as possible the project

requirements/deliverables (ambiguity always leads to problems)

● DO: Confirm if the requirements can be broken down/aggregated up into
smaller/larger deployment phases

● DON’T: Accept additions to the project scope or a reduction in the project
deadline without explaining the impact and having it accepted

Example Scenario: Scope
In this example engineers
designed and tested each
section of the network in
isolation; the final end-to-end
test was a failure, very close
to the project deadline.

Example Scenario: Deliverables
“Deliver an Internet connection at location X”

● Too specific:
○ “We’ll provide connectivity using four twisted pair copper cables, with each pair signaling at a

frequency of 125 Mhz using a 5-level encoding scheme, to achieve a Layer 1 bit rate of
1.25Gbps, with a 2.5 volt peak average differential per twisted copper pair to maintain DC
balance…”

● Not specific enough:
○ “A 1Gbps handover interface”

● Seems OK:
○ “A 1000Base-T Ethernet handover interface using RJ45 terminated Cat5e cable”

Design Decisions: Documentation and Support
● DO: Think about how you will document the solution. If you can’t easily

explain it, how will others understand it?

● DO: Think about how others will have to troubleshoot the solution at 3AM
(HLA, HLD, LLD, config templates, wiki/KB articles, cheat-sheets)

Design Decisions: Documentation and Support
● DO: Try to be so specific in your documentation that you don’t need

configuration examples (I hate config snippets!)

● DON’T: Mix disciplines, try to make failure domains that a single person or
team can troubleshoot

Example Scenario: Documentation and Support
In this example, 1st line network support personal were expected to log into Linux
servers and troubleshoot interface connectivity to ascertain why BGP on a router
wasn’t working!

Design Decisions: Standardisation and Monitoring
● DO: Standardisation is a major factor of scalability and reducing time to repair,

use standardised products and services as much as possible

● DO: Accept non-standard ideas, every product catalogue starts empty

Design Decisions: Standardisation and Monitoring
● DON’T: Deploy what you can’t support. E.g. if your NMS can’t monitor a

service, how will you provide service assurance?

● DON’T: Deploy anything that will increase your technical debt. No matter how
simple a new technique maybe, who (else) can deploy/support/upgrade it?

Example Scenario: Standardisation
After foolishly accepting to productise
bonded ADSL because, “it’s basically
the same as regular ADSL” according to
Sales and Marketing, I became the
single point of contact for all bonded
ADSL queries, provisions, support and
escalations.

3x L vs. 1x L

Example Scenario: Monitoring
A customer contract listed sub-second
network failure detection and mitigation
as a requirement for a standard service.
It also required that the NMS be able to
prove that the failure was detected and
mitigated in less than 1 second.

Who polls once per second or faster?
How else could this be monitored?

Design Decisions: Upgrades and Failures
● DO: Consider the upgrade path of the design for the reasonable future (12 to

24 months, nobody knows what will happen in 5 years time)

● DO: Consider the different failure scenarios that can happen and their individual
likelihood, is there a dependency tree here with cascading failures?

● DON’T: Become distracted with every single failure scenario, focus on the
requirements

Example Scenario: Upgrades
A customer required a one-off
connection to a private cloud provider at
a spoke/spur PoP, then word spread;
a 2nd customer requested connectivity
to the same cloud provide, then a 3rd,
then a 4th, and so on…

That cloud provider only supported
10Gbps links and didn’t support LAGs.
This cost us ports and capacity in a PoP
where we had little of both and
overloaded our PE.

Example Scenario: Failures
We dual homed all services to two routers in DC 1, and replicated all services in
DC 2 dual-homed to another pair of routers, N+N resiliency, WTFCGW?

Design Decisions: In-Life and Decommissioning
● DO: Think about how you will keep the design clean over time, will it

“deteriorate” over time and become unclean?

● DON’T: Assume this 3 year deployment will still be needed next year, or that
won’t be here 15 years later

Design Decisions: In-Life and Decommissioning
● DO: Think about how it will be decommissioned or partially decommissioned,

don’t focus on provisioning only

● DON’T: Let the documentation “rot” or in-house knowledge become stale,
have “refresher-sessions”

Example Scenario: In-Life
I once had to play a real-life game of
‘would you rather…’ and choose
between adding 900 static routes or 300
BGP sessions to a satellite PE, which
was already running the maximum
number of vendor supported BGP
sessions.

How can we be sure such a large
number of routes/sessions are still valid
1/2/3 years from now?

In Summary…

Summary and Review
● Requirements: Define the requirement and solution as clearly as possible,

demand clarification where ambiguity exists. Continuously refer back to the
requirements and evidence fulfilment in your design documents.

● Cost: Keep in mind your budgetary constraints but don’t use sub-par
materials to please finance.

Summary and Review
● Scope: Ensure the scope of the design is clear, explicitly state what isn’t

included (rather than implicitly by ambiguously not mentioning something).
When it’s agreed that something is out of scope or not required, record who
approved that exclusion and why.

● Deliverables: Ensure everyone knows who’s responsible for which areas of
the design, and when each milestone is due.

Summary and Review
● Documentation: Document how something should behave, how it behaved

when tested, what happened when testing failure scenarios, what happened
during failures in production, are there any unknowns?

● Support: Break the design into smaller managed sections. Create cheat-
sheets for troubleshooting these sections. Have operational handover and
training sessions to educate the NOC. Have another one 12 months from now
when everyone has forgotten. If a big outage occurs after 6 months, move
back that 12 month review by 6 months.

Summary and Review
● Standardisation: This is a top priority with simplicity. Create standard products

(config templates, monitoring templates, support templates) and reuse them
throughout your designs. Can you easily hire someone to continue this work?
Technical debt doesn’t only exist in a team in the present, but also in the
future.

● Monitoring: If you can’t easily monitor it, how difficult will it be to add that
functionality to your NMS? Will an upgrade of the NMS break that feature?
Monitoring is not exempt from the simplicity/standardisation/supportability
requirements, as soon as you can’t monitor a service you’re in trouble.

Summary and Review
● Upgrades: Try to think either a horizontal upgrade path (can we deploy more

pizza boxes or add more line cards?) or a vertical upgrade path (what is the
next generation of devices that will supersede the current ones?).

● Failures: They definitely will happen. Test the mostly likely ones to know what
they look like on the CLI/via Syslog/NMS/from the customers perspective.
What seemingly non-related infrastructure failures could impact this design?

Summary and Review
● In-Life Maintenance: In the best case scenario that the product/service is

widely deployed, it shouldn’t be cumbersome to maintain with scale

● Decommissioning: If the documentation is up to date and all the components
are standardised it should be simple but, the reality is config-rot or CMDB-rot

Summary and Review
● Complexity: Avoid complexity as much as possible, there is a direct

correlation between complexity and support/billing/customer overhead

● Operations: When trying to balance between design decisions, default to
what's best for your operations, not the customer; there’ll be other customers
and you need to sleep at night

Questions?

